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Critical thresholds in pressureless Euler–Poisson
equations with background states

Young-Pil Choi, Dong-ha Kim, Dowan Koo, and Eitan Tadmor

Abstract. We investigate the critical threshold phenomena in a large class of one-dimensional
pressureless Euler–Poisson (EP) equations, with non-vanishing background states. First, we estab-
lish local-in-time well-posedness in proper regularity spaces specifically involving PW �1;p , which
are adapted for a neutrality condition to hold. This negative homogeneous Sobolev regularity is
shown to be necessary: we prove an ill-posedness result in classical Sobolev spaces H s.R/ in the
absence of this negative Sobolev regularity. Next we study the critical threshold phenomena in the
neutrality-condition-satisfying pressureless EP systems. We prove that in the case of attractive forc-
ing, the neutrality condition can further restrict the sub-critical region into its borderline, namely,
the sub-critical region is reduced to a single line in the phase plane. We then turn to providing a
rather definitive answer for the critical thresholds in the case of repulsive EP systems with vari-
able backgrounds. As an application, we analyze the critical thresholds for the damped EP system
for cold-plasma-ion dynamics, where the density of electrons is given by the Maxwell–Boltzmann
relation.

1. Introduction and statement of main results

1.1. Systems and notions

In this paper we are interested in the analysis of critical threshold phenomena in a large
class of pressureless Euler–Poisson (EP) equations in one dimension. More precisely, the
main purpose of our work is to propose a new method based on Lyapunov functions to
investigate the super-critical region with finite-time breakdown and the sub-critical region
with global regularity of C1 solutions to the following equations:8̂̂<̂

:̂
@t�C @x.�u/ D 0;

@tuC u@xu D ��uC kE;

@xE D � � c; E.t;�1/ D 0;

.t; x/ 2 .0; T / �R; (1.1)

subject to initial data
.�; u/.0; x/ D .�0; u0/.x/; x 2 R: (1.2)
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Here, �D �.t; x/, uD u.t; x/, andE DE.t; x/ are respectively, the density, velocity, and
forcing of the flow. The parameter � > 0 indicates the strength of damping. The parameter
k on the right of (1.1)2 is a physical constant, signifying the underlying forcing of the sys-
tem – either an attractive or repulsive forcing depending on whether k < 0 or, respectively,
k > 0; for simplicity, we use the rescaled parameter k D ˙1 throughout the paper.

Equation (1.1)3 involves a positive background state, c D c.t; x/, which is assumed to
be uniformly bounded away from vacuum,

0 < c� 6 c.t; x/ 6 cC; 8.t; x/ 2 RC �R;

to vary smoothly in a manner specified in Theorem 1.1 below. Finally, we augment (1.1)
with the following neutrality condition:Z

R
.�.t; x/ � c.t; x// dx D 0: (1.3)

This neutrality condition plays a central role in our discussion. Accordingly, we define
a classical solution to be a pair, .�; u/, satisfying both the system (1.1) pointwise, and
the neutrality condition (1.3). Theorem 1.1 below establishes a proper regularity class in
which the neutrality condition (1.3) is guaranteed to hold for local classical solutions.
We note that the vanishing condition for E in (1.1)3 is equivalent to E.t;1/ D 0 under
the neutrality condition. Consequently, the EP system (1.1), equipped with the neutrality
(1.3), imposes the requirement that the forcing term E decays at both spatial ends.

1.2. History and review

The system (1.1) is one of the fundamental fluid models describing the dynamics of many
important physical flows, including charge transport, plasma waves, and cold ions (k > 0),
as well as collapse of stars due to self-gravitation (k < 0); see [2, 3, 8, 12, 13, 16, 26] and
references therein.

A mathematical study of finite-time loss of regularity (or singularity formation as
shocks) and global-in-time regularity of solutions to Euler equations with non-local inter-
action forces are by now well established. Since the literature-related results are too vast
to be mentioned here, we focus on results for the EP systems. The critical thresholds in
the one-dimensional pressureless EP system (1.1) with � > 0 and c D Nc > 0 are studied
in [13]. The damped EP system or EP system with the quadratic confinement is also taken
into account in [5, 10]. In the multi-dimensional case, the critical thresholds are inves-
tigated for the restricted EP system in [23, 24] and EP system with radial symmetry in
[6, 29, 30].

The case with pressure, i.e., the pressure term p.�/D �
 with 
 > 1, is added to the EP
system, but with c D 0 and � D 0, is also studied in [28]. The critical thresholds for the EP
system with pressure and non-zero background state are a challenging open problem. We
refer to [14,17,19] for the global-in-time existence of solutions with small amplitude to the
EP system for electrons. The critical thresholds for the one-dimensional Euler-alignment
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or Euler–Poisson-alignment systems are analyzed in [7, 9, 27]. The finite-time singularity
formation for the one-dimensional EP system for cold ions is also discussed in [1, 22].

Beyond those developments, there is little literature on critical thresholds in EP sys-
tems with variable background. In this context, we mention the recent work [4] in which
critical threshold conditions in the system (1.1) with the attractive forces are investigated.
In order to handle new difficulties arising from the consideration of the variable back-
ground, a combination of phase plane analysis and a comparison principle is used in [4].
However, as mentioned in [4], that strategy would not work in the presence of repulsive
forces.

1.3. Main results

In this section, we present our main results on the Euler–Poisson equation with back-
ground states. The purpose of this work is fourfold:

(i) We present a new framework for the well-posedness theory for the EP system
with the background, which includes a rigorous treatment of the neutrality con-
dition (1.3), while justifying this framework by presenting concrete examples;

(ii) we point out that in the attractive case, the set of relevant configurations that yield
global smooth solutions – with variable and even with constant background – is,
in fact, restricted to the borderline case due to the neutrality condition;

(iii) we present an in-depth threshold analysis for global solutions of the repulsive EP
system with variable background; and

(iv) as an application of the repulsive case, we study the case of cold plasma cor-
responding to exponential background c D e� , where � is the potential of the
flow.

Below, we present the main results in more detail.

1.3.1. Local well-posedness and neutrality condition. We first develop a local-in-time
well-posedness theory for the EP system with a non-vanishing background state (1.1).
The EP system with zero background has been studied by many authors, and in particular,
we refer to the H s.R/ well-posedness in [20, appendix]. However, we cannot specify an
appropriate reference for the local-in-time well-posedness theory for the EP system with
non-vanishing background, (1.1).

Here, the neutrality condition, (1.3), implies the non-integrability �.t; �/ … L1.R/, in
order to match the infinite mass that “enters” the system from infinity,

R
R c.t; �/ dx D

1. Consequently, the local well-posedness of (1.1) requires a careful study of proper
regularity space, beyond H s.R/.

To this end, we define the following function space:

Xp;s ´
®
.f; g/ W f 2 PW �1;p \H s.R/; g 2 Lp.R/; @xg 2 H

s.R/
¯
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with the norm

k¹f; gºkXp;s ´ kf k PW �1;p C kf kH s C kgkLp C k@xgkH s :

For p D 2, this simplifies to

k¹f; gºkX2;s D kf k PH�1\H s C kgkH sC1 :

We assume 1 < p <1 to provide generality. Throughout the paper, we fix s > 2.

Theorem 1.1 (Local well-posedness). Let 1 < p < 1. Suppose that the initial data
.�0; u0/ satisfy

.�0 � c0; u0/ 2 X
p;s;

where c D c.t; x/ is given as

c.t; x/ D Nc C �.t; x/ with � 2 C0.Œ0;1/IH s
\ PW �1;p.R// (1.4)

for some Nc > 0. Then there exists a positive constant T > 0 such that the system (1.1)–(1.2)
admits a unique classical solution .�; u/ satisfying

.�.t; �/ � c.t; �/; u.t; �// 2 C0.Œ0; T �IXp;s/

and the neutrality condition (1.3). Moreover, if the solutions � and @xu are bounded over
the time interval Œ0; T �, i.e.,

jjj¹�; uºjjjŒ0;T �´ sup
06t6T

.k�.t/kL1 C k@xu.t/kL1/ <1;

then there is propagation of higher-order regularity of .�; u/,

sup
06t6T

k¹�.t; �/ � c.t; �/; u.t; �/ºkXp;s

6 .k¹�0 � c0; u0ºkXp;s C .T C 1/k�kL1.0;T IH s\ PW �1;p//e
MT ; (1.5)

where M � jjj¹�; uºjjjŒ0;T � C Nc C 1.

Remark 1.2. The inclusion of PW �1;p regularity is crucial for ensuring the propagation of
the neutrality condition. Indeed, solutions constructed in Theorem 1.1 satisfy the neutrality
condition (1.3). By Lemma A.1, any f 2 L2 \ PW �1;p.R/ satisfiesZ

R
f .x/ dx D 0

in the sense of an improper integral. Thus, � � c 2 C0.Œ0; T �IH s \ PW �1;p.R// ensures
the neutrality condition (1.3) is satisfied for t 2 Œ0; T �. Moreover, the condition on � in
(1.4) preserves mass fluctuation of c.t; x/,Z

R
.c.t; x/ � c0.x// dx D 0; 8t 2 Œ0;1/;

so that the neutrality condition is compatible with mass conservation of �.
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Remark 1.3. The family of Xp;s spaces provides an (almost) optimal framework for the
well-posedness theory of EP system (1.1), while satisfying the neutrality condition (1.3).
By interpolation, we note that

p1 < p2 ) Xp1;s � Xp2;s :

However, the endpoint space X1;s cannot guarantee the neutrality condition to hold. For
instance,

�0 � c0´ e�x
2

2 PW �1;1 \H s.R/;

Z
R
.�0 � c0/ dx > 0:

The PW �1;p regularity of � � c must correspond to the Lp regularity of u for the well-
posedness defined in Xp;s space. This correspondence is crucial for the theory to hold.
To highlight the necessity of negative homogeneous Sobolev regularity, we present the
following ill-posedness result.

Theorem 1.4 (Ill-posedness). For the EP system (1.1)–(1.2) with c D Nc > 0, there exists
.�0; u0/ satisfying

.�0 � Nc; u0/ 2 H
s.R/ �H sC1.R/

and Z
R
.�0.x/ � Nc/ dx D 0

such that the classical solution .�; u/ to (1.1)–(1.2) with initial data .�0; u0/ satisfies

u.t/ … L2.R/; 8t 2 .0; ı�

for some ı > 0. In particular, the EP system (1.1)–(1.2) is ill posed in H s �H sC1.R/.

The intuition behind this ill-posedness result lies in the behavior of functions in Lp

spaces with large p. Such functions exhibit slower decay at the far field. By choosing
�0 � Nc 2 PW

�1;p.R/with p > 2, we can only expect u.t/ 2Lp.R/, which excludesL2.R/
as soon as t > 0.

1.3.2. The case of attractive forcing. In this part, we discuss how the neutrality con-
dition affects the critical threshold phenomenon of the attractive EP system, which is
considered to be irrelevant. The threshold conditions for the attractive EP system were
derived earlier in [4, 10, 13]. The sub-critical condition for the existence of a global clas-
sical solution of the attractive EP system is given by�

�� C
p
�2 C 4c�

2

�
u00.x/ > .�0.x/ � c�/; 8x 2 R; (1.6)

where c� ´ c > 0 for the constant [13, Theorem 3.2], [4, Theorem 2.5] and c� ´
min c.�; �/ > 0 for the variable background case [4, Theorem 2.2]. In particular, this
threshold is sharp for the constant background case; if there exists x 2 R which fails
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to satisfy the inequality in (1.6), then the solution forms a singularity in a finite time.
In the following theorem, however, we find that the sub-critical region should be further
restricted to its borderline zone – initial configurations satisfying equality in (1.6), in order
for the neutrality condition to be fulfilled.

Theorem 1.5 (Reduction to the borderline). Suppose that .�;u/ is a global-in-time classi-
cal solution of the attractive EP system (1.1)–(1.2)–(1.3), subject to initial data satisfying
(1.6). Then the set of admissible c.�; �/’s is necessarily restricted to the constant back-
ground, namely – c.�; �/ D c� and (1.6) is reduced the borderline case�

�� C
p
�2 C 4c�

2

�
u00.x/ D .�0.x/ � c�/; 8x 2 R: (1.7)

Remark 1.6. Theorem 1.5 shows that in order to entertain the neutrality condition, the
sub-critical criteria for variable backgrounds, (1.6), are too restrictive in the sense that
they will rule out all but the borderline cases. In particular, for the constant background
case c D c�, the solution .�; u/ of a neutrality-satisfying attractive EP system has global-
in-time regularity if and only if its initial data .�0; u0/ satisfies (1.7).

This reduction to the borderline is a main theme in the attractive case. We demonstrate
this in the context of variable background, c D c.t; x/. Now assume that ju0.x/j

jxj!1
�����!

0.1 We integrate (1.6) to find�
��C

p
�2C4c�

2

�
u0.x/

ˇ̌̌̌R
�R

>
Z R

�R

.�0.x/�c0.x// dx C
Z R

�R

.c0.x/�c�/ dx: (1.8)

By assumption, u0.x/jR�R vanishes as R " 1 (in fact, equals zero in the periodic case)
and the neutrality condition yields

R
R.c0.x/� c�/dx D 0, which implies c0.x/D c� and

we get equality at (1.8)R!1. By assumption, both sides tend to zero with R " 1, hence
the equality (1.6) takes place almost everywhere. Indeed, for initial data satisfying (1.6),
we have �

�� C
p
�2 C 4c�

2

�
@xu.t; x/ > .�.t; x/ � c�/; 8x 2 R;

so that we can repeat the previous argument for each t > 0; in particular, we get c.�; �/ D
c�. In Section 3 we recover the critical threshold results for attractive EP systems with
constant/variable backgrounds via the Lyapunov function method. It captures the solution
trajectories in a geometric way so that it can be more intuitively understood than the
previous approaches. More importantly, a notable feature of the Lyapunov-based approach
is that it goes beyond the attractive forcing case; it can be employed in obtaining the critical
thresholds for the repulsive EP systems, in particular, with variable backgrounds.

1This is a reasonable assumption, as even without imposing integrability on u itself, the continuity
equation and the neutrality condition imply that ju0.x/ � u0.�x/j ! 0 as x !1.
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1.3.3. The case of repulsive forcing. We now turn our attention to the study of critical
thresholds for the repulsive EP systems. Unlike the attractive interaction case, there is
no literature on the sub-critical criteria for the repulsive EP system in the variable back-
grounds. We provide the first sub-critical results in this case. In order to present our results
more precisely, we must introduce the method of phase plane analysis. To this end, we
consider the auxiliary variables .s; w/ (introduced by Liu, Engelberg, and the last author
[13] in their study of critical thresholds of EP systems with constant backgrounds),

s´
1

�
and w´

@xu

�
:

Let�0´ P�.t; x.t// denote differentiation along particle path x.t/ D x.t I˛/,

Px.t I˛/ D u.t; x.t I˛//; x.0I˛/ D ˛: (1.9)

We find that (abusing notation) w.t/ D w.t; x.t// and s.t/ D s.t; x.t// satisfy´
w0 D ��w C k.1 � cs/;

s0 D w:
(1.10)

We observe that the question of global-in-time regularity vs. finite-time breakdown is
reduced to whether s.t/ attains zero – �.t; �/ blows up – in a finite time. There are two
classes of initial configurations .w0; s0/ of our interest. We say †[ is a sub-critical region
of (1.10) if it is an invariant set, i.e., .w0; s0/ 2 †[ implies .w.t/; s.t// 2 †[ for all t > 0.
On the other hand, we say †] is a super-critical region of (1.10) if for each .w0; s0/ 2 †],
there exists T� > 0 such that s.T�/D 0. Hence, the set of sub-/super-critical regions gives
rise to the criteria of initial data .�0; u0/ for which the local-in-time classical solution
of (1.1)–(1.2) becomes global or forms a singularity in a finite time. Lastly, we say the
critical threshold is sharp if

R �RC D †
[
[†]:

For the constant backgrounds, where the solutions to (1.10) can be obtained explicitly,
the sharp critical threshold was obtained in [13] for the undamped case, precisely given as

†[ D
®
�
p
s.2 � Ncs/ < w <

p
s.2 � Ncs/

¯
; †] D R �RC n†

[; (1.11)

where c D Nc > 0 denotes the background. Recently, Bhatnagar and Liu obtained the sharp
critical thresholds for the damped case [5].

For the variable backgrounds, however, we note that c D c.t; x.t; ˛// in (1.10)2
varies along the characteristic and the system (1.10) is not closed. We overcome this
non-locality by exploiting the uniform bounds of c. We compare the system (1.10) to
the one associated with its extremes c D c˙, and we establish the critical thresholds
for the variable background by the solutions originating from the constant backgrounds.
This idea – a Lyapunov-based approach – is widely used for attractive and repulsive force
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in Sections 3 and 4. By nature of this comparison method, all our results in the sequel are
sharp in the sense that we can recover the sharp critical threshold results for the constant
backgrounds once we set c� D cC.

Throughout this paper, we use

L.w; s/ D w C f .s/

as a general form of the Lyapunov function, where f will be chosen so as to make the
sign of L determine the critical threshold regions. In particular, L.w; s/ D 0 designates
the boundary of sub-/super-critical regions – often, we will call this the threshold line.

To obtain the threshold lines of the (damped) repulsive EP system, we make use of the
following Lyapunov functions:

LP .w; s/´ w C
p
2P.s/; LN .w; s/´ w �

p
2N.s/; (1.12)

where P and N are the maximal solutions of the following ODEs:

dP
ds
D �

p
2P.s/C 1 � c1s; P.0/ D 0; (1.13)

dN
ds
D ��

p
2N.s/C 1 � c2s; N.s�/ D 0; (1.14)

with constants c1; c2 > 0, � > 0, and s� > 1
c2

. The choice of c1 and c2 will depend on the
context, either Nc for the constant background or c˙ for the variable background case.

To exploit these Lyapunov functions, we characterize the domains of
p
2P.�/ andp

2N.�/. By abusing notation, we denote the domain of
p
2P.�/ by Dom.P /. We apply

the parallel statement to N . Indeed, the domains are characterized as

Dom.P / D

´
Œ0;1/; � > 2pc1;
Œ0; Qs�; 0 6 � < 2pc1;

Dom.N / D

´
.�1; s��; � > 2pc2;
Œs��; s��; 0 6 � < 2pc2;

(1.15)

where

Qs D
1C e
1

c1
; s�� D

1

c2
�

�
s� �

1

c2

�
e
2 ; 
i ´

��p
4ci � �2

; i 2 ¹1; 2º: (1.16)

In the context of constructing the sub-/super-critical regions, we always choose s�´ Qs so
as to make these regions as large as possible. Here we mention that the formula for s��
plays a vital role in establishing the critical regions.

The main novelty of this approach originated with Bhatnagar and Liu [5], with the
purpose of replacing an explicit algebraic description of the critical threshold, by a dif-
ferential description expressed in terms of a maximal solution of the ODE in the w–s
plane:

dQ.s/
ds

D � C
1 � Ncs

Q.s/
: (1.17)
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Indeed, while
p
2P and �

p
2N coincide with the maximal solution Q of [5] in the case

of c1 D c2 D Nc, here we make a distinction between
p
2P and �

p
2N , as we trace the

sign of Q, corresponding to the positive and negative solutions. In Section 4 we provide a
precise characterization of domains (1.15)–(1.16), replacing the graphical representation
associated with (1.17) in [5].

Comparison principle. We now introduce our comparison principles, deploying the Lya-
punov functions (1.12), to establish the critical thresholds. For this, we denote P˙ by the
solution of (1.13) with c1 D c˙ and N˙ by that of (1.14) with c2 D c˙. The weak com-
parison principle is given as follows:

LP�.w.t/; s.t// 6 0 if LP�.w0; s0/ 6 0;

LNC.w.t/; s.t// > 0 if LNC.w0; s0/ > 0;
(1.18)

provided that

8� 2 Œ0; t �; s.�/ 2 Dom.P�/ .resp. s.�/ > 0 and s.�/ 2 Dom.NC//:

This gives rise to the construction of super-critical regions:

†]´ R �RC n
®
�
p
2P�.s/ < w

¯
for � > 2

p
c�;

and

†]´ R �RC n
®
�
p
2P�.s/ < w <

p
2NC.s/

¯
for 0 6 � < 2

p
c�: (1.19)

On the other hand, we have the strong comparison principle:

LPC.w.t/; s.t// > 0 if LPC.w0; s0/ > 0;

LN�.w.t/; s.t// < 0 if LN�.w0; s0/ < 0;
(1.20)

as long as

8� 2 Œ0; t �; s.�/ 2 Dom.PC/ .resp. s.�/ > 0 and s.�/ 2 Dom.N�//:

It leads us to define

†[´
®
�
p
2PC.s/ < w

¯
for � > 2

p
cC;

and

†[´
®
�
p
2PC.s/ < w <

p
2N�.s/

¯
for 0 6 � < 2

p
cC: (1.21)

It is not always the case that the set†[ (1.21) is sub-critical; some extra conditions should
be met to secure the sub-criticality.
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Closing condition. In order to prove that †[ (1.21) and †] (1.19) are indeed sub-/super-
critical regions, we require

s�� 6 0 (1.22)

to hold. We call (1.22) the closing condition. The term closing is motivated by the geomet-
ric depiction that the †[ and R �RC n†] are enclosed by its boundaries, as in Figures 1
and 3.

The closing condition plays a key role in constructing a sub-/super-critical region. We
illustrate this by demonstrating that †] in (1.19) is a super-critical set. We readily check
that the closing condition is validated for †]. Indeed, by assigning .c1; c2/ D .c�; cC/ to
(1.16), we obtain

s� >
2

c�
>

1

cC
and s�� 6

1

cC
�

� 2
c�
�
1

cC

�
6 0:

In particular, it implies that the LNC.w; s/ D 0 line crosses the w-axis at
p
2NC.0/ > 0

so that the boundary of †] can be decomposed as

¹LP�.w; s/D 0º [ ¹LNC.w; s/D 0; s > 0º [ ¹w >
p
2NC.0/; sD 0º [ ¹w 6 0; sD 0º:

By the weak comparison principle (1.18), we deduce that if .w0; s0/ 2 †], then
.w.t/; s.t// can escape †] only through the s D 0 line (with w 6 0 because s.t/0 D
w.t/ >

p
2NC.0/ > 0 on the right-hand part of horizontal boundary). In fact, for each

.w0; s0/ 2†
], there exists t� <C1 such that s.t�/D 0. Consult Propositions 4.4 and 4.5.

It follows that†] is a super-critical set. Hence, we obtain a super-critical condition for the
undamped repulsive EP with variable backgrounds.

Theorem 1.7 (Finite-time breakdown). Consider the repulsive EP system (1.1)–(1.2). For
given initial data .�0; u0/, if there exists x 2 R, which does not satisfy

• ��0.x/
q
2P�.

1
�0.x/

/ < u00.x/ when � > 2pc�,

• ��0.x/
q
2P�.

1
�0.x/

/ < u00.x/ < �0.x/
q
2NC.

1
�0.x/

/ when 0 6 � < 2pc�,

then the solution .�; u/ will lose C1 regularity in a finite time.

Remark 1.8. For the undamped � D 0 case, we have

†] D R �RC n
°
�
p
s.2 � c�s/ < w <

q
s.2 � cCs/C

4
c�

�
cC
c�
� 1

�±
: (1.23)

Note that †] coincides with (1.11) if we set c� D cC D Nc. Moreover, it improves pre-
viously known super-critical results for repulsive EP systems with variable backgrounds
[1, 22]. In the phase plane coordinates, these previous super-criteria can be expressed as
s > 2

c�
and w C

p
2s 6 0, respectively. In fact, (1.23) contains these two regions. We

display this in Figure 1 for the reader’s convenience.
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(a) The super-critical set in (1.23)
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Figure 1. Illustration of the super-critical regions

We now turn our attention to the sub-critical case. The closing condition can also
be exploited to show that †[ in (1.21) is a sub-critical set. Once we assume the closing
condition holds for †[, then the boundary of †[ can be decomposed as®

LPC.w; s/ D 0
¯
[
®
LN�.w; s/ D 0; s > 0

¯
[
®
0 < w 6

p
2N�.0/; s D 0

¯
: (1.24)

Note that †[ is an open set, and we can prove that any trajectory issued inside this set
cannot hit the boundary by the strong comparison principle. Consult Proposition 4.7 for
the details.

Unlike the super-critical set, the closing condition is not satisfied for †[ in (1.21) in
general. For instance, if � D 0with c� < cC, then the closing condition is violated because

s�� D
2

c�
�
2

cC
> 0:

In fact, the closing condition is not merely an artifact of technique but reflects the diffi-
culties in obtaining sub-critical regions for the repulsive EP system. To exhibit this, we
introduce the following system of ODEs:´

w0 D 1 � .1C " sin.t//s;

s0 D w;
(1.25)

with .w0; s0/ D .0; 1/. Although the deviation of background from 1 is assumed to be
small as j.1C " sin.t//� 1j 6 ", the oscillation of .w.t/; s.t// and c.t/ can be aligned so
that it makes a resonance. In particular, s.t/ attains zero in a finite time. We implemented
the numerical experiment of (1.25) with "D 0:05 using the built-in ode45 MATLAB com-
mand. See Figure 2 for its depiction. This example convinces us that the closing condition
is necessary to construct a sub-critical region.
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Figure 2. The evolution of s (left) and the phase plane plot (right) of the solution trajectory of (1.25)

In the presence of damping (� > 0), the closing condition always holds for the � >
2
p
cC case. For the 0 < � < 2

p
cC case, the closing condition can be entertained by

imposing suitable conditions on cC, c�, and �. The heuristic is that the ratio of cC over
c� is close enough to 1, and the damping effect is large enough to control the oscillation
so that the system is similar to that of a constant background case.

Theorem 1.9 (Global-in-time regularity). Consider the repulsive EP system (1.1)–(1.2).
It admits a global classical solution, depending on the relative size of � and

p
c˙. Specif-

ically, a global classical solution exists if the initial data .�0; u0/ falls into one of the
following two cases, so that for all x 2 R there holds

#1: � > 2pcC and ��0.x/
q
2PC

�
1

�0.x/

�
< u00.x/;
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#2: 0 < � < 2
p
cC and ��0.x/

q
2PC

�
1

�0.x/

�
< u00.x/ < �0.x/

q
2N�

�
1

�0.x/

�
,

where sC´ 1Ce
C

cC
, 
˙´ ��p

4c˙��2
, and one of the following two sub-cases is fulfilled:´

#2:1W either 2
p
c� 6 � < 2

p
cC and sCc� > 1;

#2:2W or 0 < � < 2
p
c� and e
�.sCc� � 1/ > 1:

(1.26)

Remark 1.10. In fact, the condition (1.26) is equivalent to the closing condition (1.22).
We arrive at (1.26) by putting .c1; c2/ D .cC; c�/ in (1.16). If we assume c� D cC, the
closing condition is satisfied without any extra condition, and we recover the sharp critical
threshold result for the damped EP system in [5].

We display the critical threshold results for the repulsive interaction case in Figure 3.
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Figure 3. Illustration of the sub-/super-critical regions for the repulsive EP system

1.3.4. Application to the EP system for cold-plasma-ion dynamics. Our final result
is finite-time singularity formation and the global regularity of the damped EP system
for cold-plasma-ion dynamics. Consider a plasma consisting of electrons and ions on R,
where both electrons and ions have constant temperature. We assume that the temperatures
of electrons and ions equal 1 and 0, respectively. In this case, our main system is given by8̂̂<̂

:̂
@t�C @x.�u/ D 0;

@tuC u@xu D ��u � @x�;

�@xx� D � � e
� ;

(1.27)

where the density of electrons �e is given by the Maxwell–Boltzmann relation [11], i.e.,
�e D e

� , where � D �.t; x/ is the electric potential.
Note that the system (1.27) corresponds to (1.1) with .k; c/D .1; e�/. We consider the

system (1.27) around a constant state .1; 0/, i.e.,

.�; u/.t; x/! .1; 0/ as jxj ! 1: (1.28)
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We notice from the above that �.t; x/! 0 as jxj !1. For the system (1.27)–(1.28) with
� D 0, the local-in-time existence and uniqueness of smooth solutions are studied in [18]
for multi-dimensional cases. Additionally, global smooth irrotational solutions with small
amplitude are constructed in [15] in three dimensions.

In order to apply the framework developed in Section 1.3.3, we need to secure lower
and upper bounds of e� . To this end, we introduce the total energy function H D H.t/
for (1.1)–(1.2) as

H D H.t/´

Z
R

�1
2
�u2 C

1

2
j@x�j

2
C U.�/

�
dx; (1.29)

where U.r/´ .r � 1/er C 1, which is non-negative for all r 2 R.
Then, as long as there exist classical solutions, one can readily check that the total

energy is not increasing in time, i.e., H.t/ 6 H0´ H.0/ for all t > 0, and conserved in
time when � D 0. It was investigated in [1] that a uniform bound of the potential function,
�, can be obtained by H0. Hence, we can apply the results in the previous section to this
case.

Theorem 1.11 (Finite-time breakdown). Consider the repulsive EP system (1.27)–(1.28)
with � D 0. For a given initial data .�0; u0/, if there exists x 2 R which does not satisfy

�
p
2�0.x/ � c� < u

0
0.x/ <

s
2�0.x/ � cC C

4

c�

�cC
c�
� 1

�
�0.x/

2;

then the classical solution .�; u/ will lose C1 regularity in a finite time. Here, c� ´
exp.V �1� .H0// and cC ´ exp.V �1C .H0// denote positive constants, where V �1

˙
are

inverses of V˙ defined in (4.7).

For the damped Euler–Poisson system for a cold plasma, the global existence and
uniqueness of H s solutions are obtained in [21] under the smallness assumptions on the
initial data .�0; u0/ near the constant equilibrium state .1; 0/ in H s norm. However, the
following theorem shows that the global-in-time existence of classical solutions to the
damped Euler–Poisson system for a cold plasma can be obtained only under the smallness
assumption on the initial energy H0 compared to the strength of damping.

Theorem 1.12 (Global-in-time regularity). For a class of initial data .�0; u0/, whose
initial energy H0 (1.29) is small enough, we assume that

� > C
p
H0; (1.30)

for some absolute constant C > 0 and

k�0 � 1kL1 C ku
0
0kL1 6 ƒ0; (1.31)

whereƒ0 >0 is a small absolute constant. Then the damped cold-ion system (1.27)–(1.28)
admits a global classical solution with initial data .�0; u0/.
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Remark 1.13. We note that (1.31) restricts .�0; u0/ to fall into the sub-critical regions in
Theorem 1.9. We can take ƒ0 D 1

2
, for instance. Thus, we are only concerned with the

smallness of H0 and the requirement on the strength of damping (1.30).

1.4. Outline of the paper

This paper is organized as follows. In Section 2 we establish the local-in-time well-
posedness of the EP system ensuring the neutrality condition. We then prove the ill-
posedness result of Theorem 1.4. We also explore the propagation of integrability for
the density perturbation around the background, which serves as an independent area of
interest in this study. In Section 3 we present our Lyapunov-based approach to establish
the critical thresholds in the attractive case. In Section 4 we discuss the repulsive interac-
tion case, completing the proofs of Theorems 1.7 and 1.9. As a consequence, we prove
Theorem 1.12, which concerns the global regularity of damped cold-plasma-ion dynam-
ics.

2. Local well-posedness and the neutrality condition

In this section, we present a rigorous mathematical treatment of the local well-posedness
and the neutrality condition of the EP system introduced in Section 1.3.1. We begin by
proving the local well-posedness theory.

2.1. Local well-posedness and non-existence

Proof of Theorem 1.1. We only provide a priori estimates of solutions in the desired regu-
larity spaces. The local well-posedness can be obtained by the standard arguments
developed for the types of conservation laws; see [4,5,25] for instances. Indeed, we obtain

d
dt
.k� � NckH s\ PW �1;p C kukLp C k@xukH s /

6 C.k@xukL1 C k� � NckL1 C Nc C 1/
� .k� � NckH s\ PW �1;p C kukLp C k@xukH s /C k�kH s\ PW �1;p ; (2.1)

where C > 0 is an absolute constant; see Appendix B for the details of (2.1). We apply
Grönwall’s lemma and k� � ckH s\ PW �1;p 6 k� � NckH s\ PW �1;p C k�kH s\ PW �1;p to obtain
(1.5), thereby concluding the proof.

In fact, the proofs of Theorem 1.4 and Proposition 2.1 below are the main themes in
this section. They restrict our attention to the case of a constant background state. For
the sake of simplicity in presenting our results, we only focus on the undamped case.
The damped case can be treated in a similar way. Our analysis relies on the characteristic
method and, especially, the explicit formulation of the Jacobian of the characteristic flow.
We briefly explain the main tools and the strategy.
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For a C1 solution .�; u/ to EP system (1.1)–(1.2) with c D Nc, we consider the charac-
teristic flow x.t; ˛/ defined in (1.9). Write

�.t; ˛/´ @˛x.t; ˛/;

signifying the Jacobian of the map x.t; �/WR! R. We note that �.0; ˛/ D 1 and x.t; �/ is
a diffeomorphism as long as �.t; �/ > 0. In particular, we have

lim
˛!˙1

x.t; ˛/ D ˙1: (2.2)

Taking @˛ of (1.9), we obtain

@xu.t; x.t; ˛// D
@t�.t; ˛/

�.t; ˛/
: (2.3)

In view of the mass conservation �0 D ��@xu, we find that

�.t; x.t; ˛// D
�0.˛/

�.t; ˛/
: (2.4)

Finally, we recall the explicit formulas of �.t; ˛/ for the undamped (� D 0) case [13].
They will lay the foundation of the proofs throughout this section:

• Repulsive case:

�.t; ˛/ D 1C
��0.˛/
Nc
� 1

�
.1 � cos.

p
Nct//C u00.˛/

sin.
p
Nct/

p
Nc

: (2.5)

• Attractive case:

�.t; ˛/ D 1C
��0.˛/
Nc
� 1

�
.1 � cosh.

p
Nct//C u00.˛/

sinh.
p
Nct/

p
Nc

: (2.6)

We now prove Theorem 1.4.

Proof of Theorem 1.4. For simplicity, we assume Nc D 1 and � D 0. We set initial data
.�0; u0/ by assigning u0 D 0 and

�0.x/ D 1C F
0.x/; F.x/´

1

.1C x2/1=4
:

We note that

F … L2.R/; F 2
\
p>2

Lp.R/; �0 � 1 D F
0
2

1\
kD0

H k.R/;

where H 0´ L2 by convention. From the definition of �0, we findZ
R
�0 � 1 dx D lim

R!1
.F.R/ � F.0// � lim

L!1
.F.0/ � F.�L// D 0:
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Thus the neutrality condition is initially satisfied.
Since .�0 � 1; u0/ 2 Xp;s for any p > 2, by Theorem 1.1, there exists a unique local-

in-time classical solution .�; u/ to EP system (1.1)–(1.2) satisfying

.� � 1; u/ 2 L1.Œ0; T �IXp;s/

for some T > 0. We note that this, in particular, requires u to decay at the far field,

lim
˛!˙1

u.t; ˛/ D 0; 8t 2 Œ0; T � (2.7)

and be bounded in Œ0; T � �R due to (A.1):

ku.t/kL1.R/ 6 ku.t/kLp.R/ C k@xu.t/kL2.R/ 6 C ; 8t 2 Œ0; T �: (2.8)

Similarly, we observe that k@xukL1 is uniformly bounded in t 2 Œ0; T �. Hence, we can
employ the forward characteristic x.t; �/ defined in (1.9). For each t 2 Œ0; ı� and R;L > 0,
we infer from (2.3) that

u.t; x.t; R// � u.t; x.t;�L// D

Z x.t;R/

x.t;�L/

.@xu/.t; x/ dx

D

Z R

�L

.@xu/.t; x.t; ˛// dx.t; ˛/

D

Z R

�L

@t�.t; ˛/ d˛:

Hence, an application of the explicit formula (2.5), for the case of repulsive forcing, sup-
plies that

u.t; x.t; R// � u.t; x.t;�L// D .F.R/ � F.�L// � sin t:

By taking L!1, thanks to (2.2) and (2.7), we find that, for all small t > 0,

u.t; x.t; R// D F.R/ sin t:

Furthermore, we observe that

jx.t; R/ �Rj 6 CT ; 8t 2 Œ0; T �

due to (2.8). This implies that for all sufficiently large R > 0,

u.t; R/ � F.R/ sin t D
sin t

.1CR2/1=4
… L2.R/; 8t 2 .0; ı�;

for ı´ 1
2

min¹T; �º > 0. The attractive forcing case can be tackled in the same manner
by recalling (2.6). The conclusion of the theorem is now immediate.
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2.2. Integrability and its failure in the neutralized EP system

The neutrality condition (1.3) is formulated as an improper integral, meaning that it does
not require the integrability of � � c. As an independent area of interest, we investigate
whether integrability of � � c can be propagated over time. Specifically, we ask whether

�.t; �/ � c.t; �/ 2 L1.R/ (2.9)

propagates over time as well.
In the following, we construct an anomalous solution, exhibiting the non-propagation

of the integrability in time even when starting with the neutralized and integrable initial
data. For simplicity, we treat the p D 2 case, noting that parallel results hold for 1 < p <
C1.

Proposition 2.1 (Failure of integrability: anomalous solution). Consider the EP system
(1.1) with c D Nc > 0. There exists an initial data .�0; u0/ satisfying

.�0 � Nc; u0/ 2 H
s
\ PH�1 \ L1.R/ �H sC1.R/

such that the local solution .�; u/ to (1.1)–(1.2) satisfies

�.t; �/ � Nc … L1.R/

as long as t > 0.

The following lemma identifies the necessary and sufficient conditions for the integra-
bility (2.9) in the case of constant background. It plays a central role in constructing the
anomalous solutions.

Lemma 2.2 (Neutrality condition: constant background). Consider the EP system (1.1)
with c D Nc > 0. Let .�;u/ be a local-in-time classical solution of (1.1)–(1.2) in Œ0; T /�R
with neutralized and integrable initial data, i.e.,

�0 � Nc 2 L
1.R/; with

Z
R
.�0.x/ � Nc/ dx D 0: (2.10)

Then the propagation of integrability (2.9) holds if and only if

u0 2 BV.R/; with
Z

R
u00.x/ dx D 0:

Proof. Let x.t; ˛/ be the forward characteristic flow satisfying (1.9). Note that �.t; �/ > 0
is well defined for each t 2 Œ0; T /. We claim that

�.t; �/ � Nc 2 L1.R/ if and only if �.t; �/ � 1 2 L1.R/:
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In this context, we apply (2.4) to see thatZ x.t;R/

x.t;�R/

j�.t; x/ � Ncj dx D
Z R

�R

j�.t; x.t; ˛// � Ncj dx.t; ˛/

D

Z R

�R

ˇ̌̌ �0.˛/
�.t; ˛/

� Nc
ˇ̌̌
�.t; ˛/ d˛

D

Z R

�R

j.�0.˛/ � Nc/ � Nc.�.t; ˛/ � 1/j d˛:

On applying the triangle inequality with (2.2), the claim follows. Hence, we deduce from
the explicit formulas for �.t; �/� 1 recorded in (2.5) and (2.6) that u00 2L

1.R/ if and only
if �.t; �/ � 1 2 L1.R/, which is equivalent to �.t; �/ � Nc 2 L1.R/.

We now assume that u00 2 L
1.R/. Similarly, in view of (2.4), one sees thatZ

R
.�.t; x/ � Nc/ dx D

Z
R
.�0.˛/ � Nc/ � Nc.�.t; ˛/ � 1/ d˛ D �Nc

Z
R
.�.t; ˛/ � 1/ d˛:

By inserting (2.5), (2.6) into �.t; �/ � 1 and integrating over R, we discern thatZ
R
.�.t; x/ � Nc/ dx D 0 if and only if

Z
R
u00.˛/ d˛ D 0:

This confirms the conclusion of the lemma.

It is worth noting that if u0 … BV.R/, we infer that the local classical solution instan-
taneously fails the integrability (2.9) by taking T > 0 arbitrarily small. Hence, this lemma
leads us to find anomalous solutions in Proposition 2.1.

Proof of Proposition 2.1. We fix �0 D Nc > 0. It satisfies (2.10), evidently. In view of The-
orem 1.1 and Lemma 2.2, we aim to choose u0 satisfying

u0 2 H
sC1
n BV.R/:

Consider
u0.x/´

sin x

.1C x2/
3
8

:

Since u0 2H sC1.R/, we obtain a local smooth solution .�;u/ via Theorem 1.1. In partic-
ular, we find by means of Morrey’s embedding that this solution is of class C1. However,
upon noting

u00.x/ D
cos x

.1C x2/
3
8

�
3

4

x sin x

.1C x2/
11
8

… L1.R/;

we find that .�; u/ fails the integrability (2.9) instantaneously by Lemma 2.2. This com-
pletes the proof.

To circumvent this anomaly, additional regularity must be imposed, for instance, u0 2
BV.R/ as detailed in the following proposition.
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Proposition 2.3 (Well-posedness with integral neutrality). Suppose that the initial data
.�0; u0/ satisfy

.�0 � c0; u0/ 2 H
s
\ PH�1 \ L1.R/ �H sC1

\ BV.R/;

where c D c.t; x/ is given as

c D Nc C �; � 2 C0.Œ0;1/IH s
\ PH�1 \ L1.R//

for some Nc > 0. Then the system (1.1)–(1.2) admits a classical solution .�.t; �/; u.t; �//
such that

sup
06t6T

.k.� � c/.t/kL1 C k.@xu/.t/kL1/ <1 (2.11)

for some T > 0. In particular, integrability condition (2.9) holds for all t 2 Œ0; T �.

Proof. We estimate the evolution of k.� � Nc/.t/kL1 and k.@xu/.t/kL1 . Straightforward
computations give

d
dt
k� � NckL1 6 k@x..� � Nc/u/kL1 C Nck@xukL1

6 k� � NckH1kukH1 C Nck@xukL1

6 k¹�.t; �/ � Nc; u.t; �/ºk2
X2;s
C Nck@xukL1

and
d
dt
k@xukL1 6 k@xuk2L2 C kukL2k@

2
xukL2 C k� � ckL1

6 2k¹�.t; �/ � Nc; u.t; �/ºk2
X2;s
C k� � NckL1 C k�kL1 :

By adding these two inequalities, we obtain

d
dt
.k� � NckL1 C k@xukL1/

6 .1C Nc/.k� � ckL1 C k@xukL1/C 3k¹�.t; �/ � Nc; u.t; �/ºk2X2;s C k�kL1 :

Applying Grönwall’s lemma to the above concludes the desired result (2.11).

We, therefore, conclude from Propositions 2.1 and 2.3 that it is necessary to assume
additional regularity u0 2 BV.R/ to secure the propagation of the integrability of � � c.

3. Attractive forcing and the restricted borderline threshold

In this section, we focus on the critical threshold phenomenon of the attractive EP system
(1.1)–(1.2). To apply the method of phase plane analysis introduced in Section 1.3.3, we
consider the following ODE system:´

w0 D ��w � .1 � c.t/s/;

s0 D w;
(3.1)
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subject to .w.0/; s.0// D .w0; s0/, where c.t/ is a smooth function satisfying 0 < c� 6
c.t/ 6 cC.

3.1. Constant background case

To give a motivation for the Lyapunov function, we initiate the discussion for the constant
background case – c.t/ D Nc. In this case, (3.1) can be rewritten in the matrix form as�

w

s � 1
Nc

�0
D

�
�� Nc

1 0

��
w

s � 1
Nc

�
: (3.2)

The dynamics of solution trajectories are determined by the eigenvalues of their coefficient
matrix, whose eigenvalues are given by

�s D
�� �

p
�2 C 4 Nc

2
< 0 and �u D

�� C
p
�2 C 4 Nc

2
> 0;

with corresponding eigenvectorsXs D
�
�s
1

�
andXu D

�
�u
1

�
. In particular, the equilibrium

point .0; 1= Nc/ of (3.2) is unstable; the solution curves are attracted to .0; 1= Nc/ along the
Xs direction while repulsed from .0; 1= Nc/ along the Xu direction.

This motivates us to define the following Lyapunov functions:

Ls.w; s/´ w � �s

�
s �

1

Nc

�
and Lu.w; s/´ w � �u

�
s �

1

Nc

�
:

In particular, the solution .w.t/; s.t// of (3.2) satisfies

d
dt

Ls.w.t/; s.t// D �uLs.w.t/; s.t// and
d
dt

Lu.w.t/; s.t// D �sLu.w.t/; s.t//;

obtaining

Ls.w.t/; s.t// D Ls.w0; s0/e
�ut and Lu.w.t/; s.t// D Lu.w0; s0/e

�s t : (3.3)

Note that Ls.w0; s0/ > 0 implies Ls.w.t/; s.t// > 0 for all t > 0. This, combined
with s0 D w and that the w-intercept of the line Ls.w; s/ D 0 is positive, yields that
¹Ls.w; s/ > 0; s > 0º is invariant. On the other hand, if Ls.w0; s0/ < 0, then (3.3)
implies that

Ls.w.t/; s.t//! �1; Lu.w.t/; s.t//! 0 as t !1:

By noticing that

Ls.w; s/ �Lu.w; s/ D .��s C �u/
�
s �

1

Nc

�
;

we conclude that s.t/ attains zero in a finite time. This argument recovers the sharp critical
threshold for the attractive EP with constant background [13, Theorem 3.2], [4, Theo-
rem 2.5].
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3.2. Variable background case

To study the critical threshold for the variable background case, we consider the following
Lyapunov functions:

L˙s .w; s/´ w � �˙s

�
s �

1

c˙

�
and L�u .w; s/´ w � ��u

�
s �

1

c�

�
;

where

�˙s D
�� �

p
�2 C 4c˙

2
< 0 and �˙u D

�� C
p
�2 C 4c˙

2
> 0:

We readily check that

d
dt

L�s .w.t/; s.t// > �
�
uL�s .w.t/; s.t//; s.t/ > 0:

Similarly, this implies that ¹L�s .w; s/ > 0; s > 0º is a sub-critical region. On the other
hand, we have

d
dt

LCs .w.t/; s.t// 6 �
C
u LCs .w.t/; s.t//;

d
dt

L�u .w.t/; s.t// > �
�
s L�u .w.t/; s.t//; s.t/ > 0:

By Grönwall’s lemma, we observe that

.��Cs C �
�
u /s.t/ D LCs .w.t/; s.t// �L�u .w.t/; s.t//C

1

�Cu
�

1

��s

6 LCs .w0; s0/e
�Cu t CO.1/

as long as s.t/ is non-negative; in particular, if LCs .w0; s0/ < 0, then s.�/ attains zero in
a finite time. Hence, we obtain the sub-/super-critical thresholds for attractive EP systems
with variable backgrounds, depicted in Figure 4. They coincide with [4, Theorems 2.2
and 2.3].

4. Repulsive forcing and threshold with variable background

In this section, we aim to establish the critical thresholds for the repulsive EP system (1.1)–
(1.2). To this end, we conduct the phase plane analysis as introduced in Section 1.3.3; for
repulsive interaction, we recall the transformed ODE system (1.10):´

w0 D ��w C 1 � c.t/s;

s0 D w;
(4.1)

subject to initial point .w0; s0/. Here we assume that 0 < c� 6 c.t/ 6 cC.



Critical thresholds in pressureless Euler–Poisson equations 225

0

0.5

1

1.5

2

2.5

3

93 92 91 0 1 2 3

s

w

Figure 4. Illustration of the sub-critical ¹L�s .w; s/ > 0º and super-critical ¹LCs .w; s/ < 0º criteria
for the attractive case

We first confirm the comparison principles. Note that

d
dt

LP .w.t/; s.t// D ��w.t/C 1 � c.t/s.t/C

�
�
p
2P.s.t//C 1 � c1s.t/p

2P.s.t//

�
w.t/

D

�
1 � c1s.t/p
2P.s.t//

�
LP .w.t/; s.t//C .c1 � c.t//s.t/: (4.2)

Similarly, we observe that

d
dt

LN .w.t/; s.t// D

�
c2s.t/ � 1p
2N.s.t//

�
LN .w.t/; s.t//C .c2 � c.t//s.t/: (4.3)

In particular, putting .c1; c2/ D .c�; cC/ yields

LP�.w.t/; s.t// 6 LP�.w0; s0/ exp
�Z t

0

1 � c�s.�/p
2P�.s.�//

d�
�
;

LNC.w.t/; s.t// > LNC.w0; s0/ exp
�Z t

0

cCs.�/ � 1p
2NC.s.�//

d�
�
;

provided that s.�/ satisfies P�.s.�// > 0 (resp. NC.s.�// > 0) for all � 2 Œ0; t �, and the
weak comparison principle (1.18) follows. Similarly, by taking .c1; c2/ D .cC; c�/, we
obtain the strong comparison principle (1.20).

The Lyapunov-based approach explained in Section 1.3.3 – essentially for the clos-
ing condition (1.22) – makes use of the domains of

p
2P and

p
2N . By witnessing the
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defining equations of P and N in (1.13), (1.14), we observe that the domains of
p
2P.�/,p

2N.�/ correspond to the set of s 2 R for which P.s/ > 0, N.s/ > 0, respectively. It
implies that the endpoints of the domains are precisely determined by zeros of P and N .
The domains (1.15) can be obtained by the explicit solutions for (4.1).

We first investigate the exact formula for Qs and s�� in (1.16). We take index i 2 ¹1; 2º.
For the 06 � < 2pci case, the solution .w.t/; s.t// of (4.1) with c.t/D ci > 0, .w0; s0/D
.0; a/ is explicitly given as

w.t/ D �
1

�i
. Nca � 1/ sin.�i t /e�

�t
2 ; �i D

r
ci �

�2

4
;

s.t/ D
1

Nc
C

�
a �

1

Nc

��
cos�i t C

�

2�i
sin�i t

�
e�

�t
2 :

(4.4)

To unveil the formula for Qs (1.16), we take a D Qs and index i D 1 so that

LP .w0; s0/ D 0C
p
2P.Qs/ D 0;

where P satisfies (1.13). By (4.2), we observe that

LP .w.t/; s.t// D w.t/C
p
2P.s.t// D 0; t 2

h
0;
�

�1

i
:

Note that the range of t can be obtained by the criteria P.s.t//> 0 and (4.4). In particular,
we deduce that

s
� �
�i

�
D 0 , Qs D s0 D

1C e
1

c1
:

Similarly, by taking a D s� and i D 2, we obtainp
2N.s.t// D w.t/ > 0 for t 2

h
�
�

�2
; 0
i
:

By noting s0 D s�, we infer that

s�� D s
�
�
�

�2

�
D

1

c2
�

�
s� �

1

c2

�
e
2 :

This confirms (1.16).

4.1. Finite-time breakdown

In this subsection, we prove that finite breakdown occurs for the super-critical initial data.
To this end, we present the following lemma, which is crucially utilized in obtaining an
upper bound of the maximal time for which a local smooth solution persists.

Lemma 4.1. For the solution .w.t/; s.t// of (4.1), the following identity holds:

t2 � t1 6
Z s.t1/

s.t2/

dsp
2P�.s/

;
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provided that
w0 C

p
2P�.s0/ 6 0

and s.�/ 2 Dom.P�/ for all � 2 Œt1; t2�. Indeed, we have equality in the integral if c.t/ D
c� and w0 C

p
2P�.s0/ D 0.

Proof. By change of coordinates s D s.t/, we haveZ s.t1/

s.t2/

dsp
2P.s/

D

Z t1

t2

w.t/p
2P.s.t//

dt >
Z t1

t2

.�1/ dt D t2 � t1;

where the inequality comes from the weak comparison principle (1.18). Under the latter
assumption, we note that (4.2) turns the inequality into equality. This completes the proof.

Several remarks are in order. Suppose that P satisfies (1.13) with c1 D Nc.

Remark 4.2. For the 0 6 � < 2
p
Nc case, we obtain an explicit integral formula:Z

Dom.P /

dsp
2P.s/

D
�

� Nc
; with � Nc ´

r
Nc �

1

4
�2:

The initial condition in (1.13) can be switched to P.a/D 0 for any a ¤ 1= Nc. In particular,
for the � D 0 case, we obtain the so-called elliptic integral:Z a

2
Nc�a

dsp
.a � s/. Nc.aC s/ � 2/

D
�
p
Nc
:

Remark 4.3. For the � > 2
p
Nc case, we haveZ s0

0

dsp
2P.s/

6
log .�s0/ _ 2

�
; with �´

� �
p
�2 � 4 Nc

2
> 0;

for any s0 > 0. In particular, it implies that Dom.P / D Œ0;C1/.

Proposition 4.4. Let � > 2pc�. For any .w0; s0/ 2 †] D ¹.w; s/ W w 6 �
p
2P�.s/;

s > 0º, the solution to (4.1) with initial data .w0; s0/ satisfies s.t�/ D 0 for some finite
t� > 0.

Proof. We claim that s.t�/ D 0 with t� 6 T0 where

T0´

Z s0

0

dsp
2P�.s/

:

Suppose not, i.e., there exists .w0; s0/ 2 †] such that s.t/ > 0 for all 0 6 t 6 t� satisfying
t� > T0. Then, by the weak comparison principle (1.18), we have

w.t/ 6 �
p
2P�.s.t//; 0 6 t 6 t�:
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Hence, by Lemma 4.1, we note in passing that

t� 6
Z s0

s.t�/

dsp
2P�.s/

6 T0 < t�;

which leads to a contradiction. Hence, the conclusion of the proposition follows by recall-
ing that T0 < C1 via Remark 4.3.

Proposition 4.5. Suppose that 0 6 � < 2pc�. For any

.w0; s0/ 2 †
]
D
®
.w; s/ W s > 0

¯
n
®
.w; s/ W �

p
2P�.s/ < w <

p
2NC.s/; s > 0

¯
;

the solution to (4.1) with initial data .w0; s0/ satisfies s.t�/ D 0 for some finite t� > 0.

Proof. We decompose †] into three subsets:

†
]
1´

®
w 6 �

p
2P�.s/; 0 < s 6 s�

¯
[ ¹w 6 0; s > s�º;

†
]
2´

®
w > 0; s > s�

¯
;

†
]
3´

®
w >

p
2NC.s/; 0 < s < s�

¯
:

• For .w0; s0/ 2 †
]
1, we put a´ max¹s0; s�º: Consider P�.�/ satisfying

dP�
ds
D �

p
2P�.s/C 1 � c�s; P�.a/ D 0:

Then we have
LP�.w0; s0/ D w0 C

p
2P�.s0/ 6 0:

Indeed, for s0 > s�, we have w0 C
p
2P�.s0/ D w0 C

p
2P�.a/ D w0 6 0, and for

0 < s0 6 s�, we notice that w0 C
p
2P�.s0/ D w0 C

p
2P�.s0/ 6 0. The weak com-

parison principle (1.18) holds for P as well. Hence, following the argument in the proof
of Proposition 4.4 leads us to find that s.t1/ D 0 with

t1 6
Z a

0

dsp
2P.s/

6
�

��
; ��´

r
c� �

�2

4
;

where the last inequality follows from Remark 4.2.

• For .w0; s0/ 2 †
]
2, we prove that w.t2/ D 0, s.t2/ > s� with t2 6 �=2

p
c�

. To this end, we
temporarily introduce the following Lyapunov function, defined by

��.w; s/´ arctan
�pc�.s � 1

c�
/

w

�
:

We claim that
d
dt
��
�
.w.t/; s.t//

�
>
p
c�
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as long as s.t/ > 1
c�

and w.t/ > 0. It can be shown by the following straightforward
computation:

d
dt
��.w; s/
p
c�

D
1

1C c�
� s� 1

c�

w

�2 �w2 � .s � 1
c�
/.��w C 1 � c.t/s/

w2

�
D

1

1C c�
� s� 1

c�

w

�2 �1C c��s � 1
c�

w

�2
C �

�s � 1
c�

w

�
C
.s � 1

c�
/.c.t/ � c�/s

w2

�
> 1:

Hence, we find that ��.w.t2/; s.t2// D �
2

with

t2 6
�=2 � ��.w0; s0/

p
c�

6
�=2
p
c�
:

In particular, we obtain w.t2/ D 0.

• For .w0; s0/ 2†
]
3, we argue as in the proof of Proposition 4.4 that s.t3/D s�,w.t3/> 0

with

t3 6
Z s�

s0

dsp
2NC.s/

6
�

�C
; �C´

r
cC �

�2

4
:

Henceforth, we deduce that, for any .w0; s0/ 2 †], s.t�/ D 0 with

t� 6
�

��
C
�=2
p
c�
C

�

�C
:

This delivers the finite upper bound of t� and completes the proof of the proposition.

Proof of Theorem 1.7. The proof is based on a combination of the weak comparison prin-
ciple (1.18) with Propositions 4.4 and 4.5. For any regular initial data .�0; u0/ in the sense
of Theorem 1.1, if there exists x 2 R such that�u00.x/

�0.x/
;

1

�0.x/

�
2 †];

then �.�; t / blows up in a finite time, and the conclusion of the theorem follows.

4.2. Global-in-time regularity

To establish the global regularity of the initial data in the sub-critical regime, we prove
the strong comparison principle (1.20) in the sequel. Recall from (4.2), (4.3) that if s.�/
satisfies PC.s.�// > 0 (resp. N�.s.�// > 0) for all � 2 Œ0; t �, then we get

LPC.w.t/; s.t// > LPC.w0; s0/ exp
�Z t

0

1 � cCs.�/p
2PC.s.�//

d�
�
;

LN�.w.t/; s.t// 6 LN�.w0; s0/ exp
�Z t

0

c�s.�/ � 1p
2N�.s.�//

d�
�
:

(4.5)
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The proof for the strict inequalities in the strong comparison principle (1.20) requires us
to control the integral in the exponential term in (4.5). We demonstrate this in detail in the
following propositions.

Proposition 4.6. Let � > 2pcC. Then

†[ D
®
.w; s/ W �

p
2PC.s/ < w; s > 0

¯
is an invariant set for the system (4.1).

Proof. We prove that for any .w0; s0/ 2†[, the solution to (4.1) satisfies .w.t/; s.t// 2†[

for all t > 0. Suppose not, i.e., there exists .w0; s0/ 2 †[ such that

T�´ inf
®
t > 0 W .w.t/; s.t// … †[

¯
< C1:

In particular, we have .w.T�/; s.T�// 2 @†[. We decompose the boundary of †[ into two
subsets:

@†[ D @†[1 [ @†
[
2´

®
w C

p
2PC.s/ D 0; s > 0

¯
[
®
w > 0; s D 0

¯
:

We will demonstrate that T� < C1 leads to a contradiction. Indeed, the nature of proof
is the same for the 0 < � < 2

p
cC case, which is slightly more complicated. Hence, we

defer the details of the proof to the next proposition.

Proposition 4.7. Let 0 < � < 2
p
cC. Then the set

†[ D
®
.w; s/ W �

p
2PC.s/ < w <

p
2N�.s/

¯
is an invariant set for the system (4.1) provided that (1.26) holds.

Proof. We prove that for any .w0; s0/ 2†[, the solution to (4.1) satisfies .w.t/; s.t// 2†[

for all t > 0. Suppose, on the contrary, that there exists .w0; s0/ 2 †[ such that

T1´ inf
®
t > 0 W .w.t/; s.t// 2 @†[

¯
< C1:

We decompose the boundary of †[ into three subsets in the sense of (1.24):

@†[1 [ @†
[
2 [ @†

[
3´

®
LPC.w; s/ D 0; 0 6 s < s�

¯
[
®
LN�.w; s/ D 0; 0 < s 6 s�

¯
[
®
0 < w 6

p
2N�.0/; s D 0

¯
:

We now consider the following sub-three cases:

• .w.T1/; s.T1// 2 @†[1. We claim that there exist a small " > 0 and C" > 0 such thatZ T1

T1�"

1 � cCs.�/p
2PC.s.�//

d� > �C": (4.6)
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If s.T1/ < 1
cC

, then we can take small " > 0 such that the integrand becomes non-negative
for all � 2 ŒT1 � "; T1�. On the other hand, if s.T1/ > 1

cC
, then we have s.T1/ < s� by

the assumption. Since
p
2PC.s�/ D 0, we can take small " > 0 such that PC.�/ is away

from zero for all � 2 ŒT1 � "; T1�. Hence, this supplies the estimate (4.6). By combining
this lower bound of integral (4.6) with the inequality (4.5), we find that

w.T1/C
p
2PC.s.T1// >

�
w.T1 � "/C

p
2PC.s.T1 � "//

�
exp.�C"/ > 0;

leading to a contradiction.

• .w.T1/; s.T1// 2 @†[2. Similarly, we can prove that there exist a small " > 0 and C" > 0
such that Z T1

T1�"

c�s.�/ � 1p
2N�.s.�//

d� > �C":

We find by means of the previous case with (4.5) that

w.T1/C
p
2N�.s.T1// 6

�
w.T1 � "/C

p
2N�.s.T1 � "//

�
exp.�C"/ < 0;

which is a contradiction.

• .w.T1/; s.T1// 2 @†[3. Noting that s.T1/ D 0 and w.T1/ > 0 conveys us to

0 < w.T1/ D s
0.T1/ D lim

t!T1�

s.T1/ � s.t/

T1 � t
6 lim sup

t!T1�

�s.t/

T1 � t
6 0;

so that we arrive at the contradiction. This completes the proof.

Proof of Theorem 1.9. In view of the conclusion that†[ is invariant for (4.1) from Propo-
sitions 4.6 and 4.7, for any regular initial data .�0; u0/ satisfying�u00.x/

�0.x/
;

1

�0.x/

�
2 †[; 8x 2 R;

we find that the classical solution .�; u/ is indeed global by invoking a priori estimate
(1.5). Hence, we arrive at the conclusion of the theorem.

As a direct consequence of this result, we present the proof of Theorem 1.12.

Proof of Theorem 1.12. We begin by discussing the smallness assumption on H0. In [1],
the lower and upper bounds on the electric potential for a classical solution to the system
(1.27)–(1.28) are investigated as follows:

0 < c� 6 e�.t;x/ 6 cC; c�´ exp.V �1� .H0//; and cC´ exp.V �1C .H0//;

where V �1
˙

are inverses of V˙ which are defined by

V.z/´

8̂̂<̂
:̂
VC.z/´

Z z

0

p
2U.r/ dr for z > 0;

V�.z/´

Z 0

z

p
2U.r/ dr for z 6 0:

(4.7)
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Note that V˙.z/ have the inverse functions and V 2 C2.R/; see [1, Section 2.1].
Indeed, careful estimates via Taylor’s expansion suggest that

V˙.z/ D
1

2
z2 C

1

9
z3 CO.z4/;

so that
V �1˙ .x/ D ˙

p
2x CO.x/; 0 < x � 1:

Hence, for small enough H0 � 1, we have

cC

c�
D 1C 2

p
2H0 CO.H0/:

We are now ready to investigate what secures the closing condition to hold; we go
through as

s�� 6 0”
�
.1C e
C/

c�

cC
� 1

�
e
� > 1

(H 1C e
C >
2cC

c�

(H 
C > 2
�cC
c�
� 1

�
D 4

p
2H0 CO.H0/

(H �� >
p
4cC � �2.4

p
2H0 CO.H0//:

Since
p
4cC � �2 D O.1/ for small � > 0, we find that (1.30) guarantees the closing

condition as desired.

A. Auxiliary lemma on the neutrality condition

In this appendix, we aim to prove the following lemma.

Lemma A.1. For f 2 L2 \ PW �1;p.R/, the improper integral satisfiesZ
R
f .x/ dx D 0:

The proof relies on the following classical result, which is included here for complete-
ness.

Proposition A.2. For f 2 PW �1;p.R/, there exists a unique F 2Lp.R/ such that F 0 D f
and

kf k PW �1;p D kF kLp :

Additionally, if f 2 L2.R/, then jF.x/j ! 0 as jxj ! 1.
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Proof. By the definition of the PW �1;p norm, there exists F 2 Lp.R/ such that F 0 D f
and

kF kLp . kf k PW �1;p C 1 < C1:

On the other hand, if zF 0 D f then, there exists a constant c 2 R such that

zF D F C c in R:

If c¤ 0, then zF …Lp . Thus, there exists a unique antiderivative of f with finiteLp-norm,
and we deduce

kf k PW �1;p D kF kLp :

If we further assume that f 2 L2.R/, then F is 1=2-Hölder continuous, and one can
readily prove that F is bounded as well: namely, for any x 2 R,

2jF.x/j 6
Z xC1

x�1

jF.y/j dy C
Z xC1

x�1

jF.x/ � F.y/j dy

6 21�
1
p kF kLp.Œx�1;xC1�/ C

Z xC1

x�1

kf kL2 jx � yj
1
2 dy

6 2.kF kLp C kf kL2/: (A.1)

Thus, we get kF kL1 6 kf kL2\ PW �1;p . We let G.x/´ jF.x/jp , then G 2 L1.R/ and

jG.x/ �G.y/j D pkF k
p�1
L1 ŒF �C0;

1
2

p
jx � yj 6 pkf kp

L2\ PW �1;p

p
jx � yj:

Since G.x/ is uniformly continuous and G 2 L1.R/, we have

jG.x/j ! 0 as jxj ! 1;

which directly implies that jF.x/j ! 0 as jxj ! 1. This completes the proof.

Proof of Lemma A.1. From Proposition A.2, there exists a unique F 2 Lp.R/ such that
F 0 D f , and thus we find

lim
b!1

Z b

0

f .x/ dx D lim
b!1

.F.b/ � F.0// D �F.0/:

Similarly, we obtain

lim
a!�1

Z 0

a

f .x/ dx D lim
a!�1

.F.0/ � F.a// D F.0/;

and thus Z 1
�1

f .x/ dx D lim
a!�1

Z 0

a

f .x/ dx C lim
b!1

Z b

0

f .x/ dx D 0:

Hence, the improper integral satisfies the desired property, completing the proof.
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B. A priori estimates in the proof of Theorem 1.1

In this appendix, we provide the details of the a priori estimate (2.1). For the sake of
simplicity, we assume k D 1 and � D 0.

• Estimates of k� � NckH s\ PW �1;p : We rewrite the continuity equation (1.1)1 as

@t .� � Nc/C @x..� � Nc/u/ D �Nc@xu (B.1)

and employ the dual formulation of PW �1;p to find that

d
dt
k� � Nck PW �1;p 6 k.� � Nc/ukLp C NckukLp 6 k� � NckL1kukLp C NckukLp : (B.2)

For the higher-order estimates of �� Nc, we differentiate (B.1) by @lx for each l D0;1; : : : ; s,
and we test @lx.� � Nc/ to find that

1

2

d
dt

Z
R
j@lx.� � Nc/j

2 dx D �
Z

R
@lx.� � Nc/u@

lC1
x .� � Nc/ dx

�

Z
R
@lx.� � Nc/Œ@

lC1
x ; u�.� � Nc/ dx

� Nc

Z
R
@lx.� � Nc/@

lC1
x u dx

µ IC IIC III;

where Œ�; �� stands for the commutator operator, i.e., ŒA; B� D AB � BA. Then standard
commutator estimates and Sobolev inequalities yield

I 6 k@xukL1k@lx.� � Nc/k
2
L2
;

II 6 k@lx.� � Nc/kL2kŒ@
lC1
x ; u�.� � Nc/kL2

6 Ck@lx.� � Nc/kL2.k@xukL1k@
l
x.� � Nc/kL2 C k@

lC1
x ukL2k� � NckL1/;

III 6 Nck@lx.� � Nc/kL2k@
lC1
x ukL2 :

Thus, we have

d
dt
k@lx.� � Nc/kL2

6 C.k� � NckL1 C Nc C k@xukL1/.k@lx.� � Nc/kL2 C k@
lC1
x ukL2/: (B.3)

• Estimates of kukLp C k@xukH s : We first estimate

1

p

d
dt

Z
R
up dx 6 k@xukL1kukpLp C kEkLpkuk

p�1
Lp

D kuk
p�1
Lp .k@xukL1kukLp C k� � ck PW �1;p /

6 kukp�1Lp .k@xukL1kukLp C k� � Nck PW �1;p C k�k PW �1;p /: (B.4)
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For the higher-order estimates of u, where l D 0; 1; : : : ; s, we deduce

1

2

d
dt

Z
R
j@lC1x uj2 dx

D �

Z
R
.@lC1x u/.@lC2x u/u dx �

Z
R
@lC1x uŒ@lC1x ; u�@xu dx

C

Z
R
@lC1x u@lx.� � c/ dx

6 Ck@xukL1k@lC1x uk2
L2
C k@lC1x ukL2k@

l
x.� � c/kL2

6 Ck@xukL1k@lC1x uk2
L2
C k@lC1x ukL2.k@

l
x.� � Nc/kL2 C k�k PH l /: (B.5)

Combining (B.2), (B.3), (B.4), and (B.5), we conclude the estimate (2.1).
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